SURFACES OF DISCONTINUITY IN A MAGNETIZED
MEDIUM

I. E. Tarapov UDC 538.4

Features of surfaces of discontinuity in a magnetized medium are considered. It is shown
that the polarizing force at interfaces may be directed towards the medium with higher
permittivity. It is proved that there exists in an absolutely conducting magnetized medium
plane-polarizing discontinuities at which the density of the medium remains invariant.

In this article, features of the boundary conditions on surfaces of discontinuity in a medium that may
be isotropic and nonhomogeneously magnetized in an induced electromagnetic field are considered.

We obtain for the case of an ideally conducting medium (E ~c¢~vB), whose motion is determined by
eight variables {p, p, v, H), the eight boundary conditions [1]

loz,] = 0, Tpvpve — (4 m)~! pH,H,] = 0 )
low,* 4+ p — pPu, — (dm)-lp H,2 = 0
lpv, (Yo + w — u — pu, + Tur) + (4n)~! (v, uH? —p H, (H-v))] =0
lw Hal =0, p H, [v:] = [v,p H,]
H
U= (4ﬂ.0)“5 w(o, T, HYHdH, u,= g_: up =28
[}
Here v, and H, are the velocity and field components tangent fo the surface of discontinuity, w is the
enthalpy of the medium in the absence of an electromagnetic field, [a]=a,—a;, where a; and a, are the val-
ues of a before and after the discontinuity, respectively.

The last condition in Egs. (1) was obtained from the continuity of the tangential component E; and
the discontinuity Hy determines the surface currenti=c(47)~1x ([Hy] X n).

For a nonconducting medium ([H,]=0) we also obtain eight™ conditions:
l0o,] = 0, [pp, vl = 0 (2)
lov,? - p — Pup — (4 m)p H,? = 0
lovy (Vo?? + w — u — pu, + Tup)] = 0
[pH, =0, [H]=0
When p = const, the conditions of Egs. (2) reduce to ordinary gasdynamical conditions and conditions
on a magnetic field that does not interact with the medium, while the conditions of Egs. (1) reduce to the
conditions on the discontinuities that are considered in magnetic hydrodynamics.

We will consider, following the classification accepted in magnetic hydrodynamics, the features that
facilitate magnetization of the medium and introduce these features into the characteristics of each type
of discontinuity.

Contact discontinuities are surfaces of discontinuity consisting of flow lines through which no mat-
ter flows (vp =0), though there exists a magnetic flux (Hp = 0). We obtain f_or them from Egs. (1),
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H]=0, [vil=0, [pH,] =0, I[pl=Ip'u,+ (4n)'pH ] (3)
Here the discontinuity [ p] remains arbitrary.

All the conditions of Egs. (3), other than [v;] =0, must be satisfied, as follows from Eq. (2), at con-
tact discontinuities in a conducting magnetized medium.

It follows from Eqgs. (3) that pressure is not a continuous variable at contact discontinuities of a
magnetized medium {they may sometimes be the interfaces of two immiscible media), and the pressure
discontinuity is determined by the difference in permittivities from one side to the other.

If u is constant in the media on both sides of the discontinuity, we obtain from Egs. (3)

(B )
[pl_"_?;r?(?iﬁf{"}- H? {4)

It follows from Eq. {4) that pressure is always greater in the medium with lesser permittivity, so
that a normal force towards the medium with lesser permittivity acts at the contact discontinuity.

However, the picture may change if we take into account magnetostriction forces.

For example, for media magnetized according to the Clausius—Mossoti law[( u —1) T/put =const ],
we find from Egs. (3),
H‘CZ . H‘cz
[Pl = g I (= 2)] = o (b2 — ) (P2 + 111 — 2)
It therefore follows that in paramagnetic media {u > 1), the pressure is greater fowards the discon-

tinuity where the magnetic permeability is greater, so that the direction of the polarizing force acting on
the contact discontinuity varies in the opposite direction.

The pressure discontinuity is determined solely by the value of the tangential field component.

For a magnetically saturated medium, when we may let p=1+47H 1M (p, T), where M is the mag-
netization function, we obtain from Eqgs. (3)

o= () T+ [ ()

Hence, if M linearly depends on p, which is usually assumed on the basis of an elementary kinetic
analysis for gases, pressure in the paramagnetic medium will be greater where p is less, but the pres-
sure discontinuity in this case will be determined solely by the normal field component.

But if we do not take into account magnetostriction effects [M =M(T)], which sometimes act for
dropping media [2], we will have
N fu B® (1 - pa)
[p]=— —45—(1‘1,2 + T uipr )
Evidently, here the polarizing force acts towards the medium with lesser permittivity and is deter~
mined by both the normal and tangential magnetic field components.

The polarizing forces we have been examining play a substantial role in the stability of interfaces
of magnetized media.

Since the density discontinuity at interfaces is arbitrary, the two last conditions of Egs. (3) allow us
to completely determine p, and T, in terms of variables prior to the discontinuity if we know the function
p=plp, T, H).

The tangential discontinuities (v =0, Hy =0) are interfaces in the tangential magnetic field. We ob-
tain from Eqgs. (3) for these discontinuities [p] =[p%upl, where the discontinuities [v¢], [Hyl, and [p] may
have arbitrary values (for a nonconducting medium only [v;] and [p] are arbitrary, whereas [H;]=0).

Tangential discontinuities thus can carry a surface current (in a conducting medium) into a vortex
sheet.

The pressure discontinuity on the tangential discontinuities is therefore determined not only by the
presence of magnetic permeabilities, but also by the difference in the tangential field components.
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For example, in weak fields [p = u(p, T)] we have for the tangential discontinuities

(p] = —82—[1&2@ —Z—‘;— — u)]

It therefore follows that if there is always a pressure discontinuity in a nonmagnetic medium in the
presence of a surface current, magnetostriction forces in a magnetized medium are able to entirely elim-
inate this discontinuity (for example, when i /p = const).

Let us now consider such discontinuities as the Alfven type and shock waves through which matter
flows, i.e., such that v, = 0. Here, eliminating the discontinuity [v;] by means of the second relation of
Egs. (1), we write the system (1) by letting mp=pwvy =0, in the form

fpep] —= U, [pHn] == 0# [mngp_l -+ b— pzuP - (47‘:)_1 H‘Hn2] =0 (5)
m,n‘l Pof[12 w2 2[112
{202 +w—opu,—u+Tur + 4np BZanZ ]:0
E n

WH, o wir 2
[-——r (Un, - Gmp )] =0

n

and the system (2) for a nonconducting medium, in the form

ool =0, [0 7,1 =0, Im + p — o, — (4m)uH,?] = 0 (8)
-

L'_)‘l:‘z ’!‘w*pup—u—}-TuT]:O
[v:] =0, [H]=0

Alfven discontinuities are surfaces of discontinuity, and the medium in passing through them will not
experience a change in its density, i.e., we have vy =0, but [p]=0.

We have for Alfven discontinuities in a magnetized conducting medium, using Eqgs. (5),

[eal = 0, lp Hol = 0, [p — pyup — (4)t H,2] = 0 ()

B2 pH 2
[“’“Pl”p*”ﬂLT”T‘Pm—‘ngTF

- / pH 2
lP'Hr Lvnz - 43191 )] = O
It is well known [3] that an Alfven discontinuity in a nonmagnetic medium is a rotating discontinuity

([H,]1=0), i.e., it possesses the property of circular polarization, and its velocity is equal to the Alfven
velocity,

Un = dp =V uH, [ dnp;
This discontinuity may be plane-polarized in a medium with magnetization.

If the wave velocity is Ay, we have from the expression for A, and from the first two relations of
Eqgs. (7) that [p]=0 and [H,]=0. Here the variation in the magnitude of the vector Hy is, in general, re-
lated to a variation in the temperature of the medium by the relation py=p,, i.e.,

pow Ty ]/Hm2 + Hp®) = p(pg, T, VHmz 4+ Hy) (8)

Consequently, when v, = Ap, we have for given Hj, three equations to determine T,, p,, and Hy, from
Eqs. (7):
[ul =0, [pl=p®lul 9

r
H

WH
‘_w—plup—u—i—TuT-{—W]:O

We note that the condition of Eq. (8) imposes a sufficiently strong constraint on the temperature
variation and that if it does not hold when Ty = T, and Hry = Hr, for nondecreasing total entropy in the dis-
continuity, only the ordinary rotary discontinuity may exist in which H; varies only in direction, while the
variation of the remaining parameters always satisfies Eqgs. (9). For example, when p = pu(p, T) Eq. (8)
implies that [T] =0. Then we have from Egs. (9) that [H;] =0, [p] =0, and [w] =0, so that when v, =A, in
weak fields only an ordinary rotary discontinuity may occur.

If the velocity at which the medium passes through the discontinuity is not equal to the Alfven ve-
locity, i.e., vy = Ap, it will follow from the last relation of Eqgs. (7) that the direction of Hy will not vary in
the discontinuity, so that this wave is plane-polarized.
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Letting v/ Ap=7v we obtain from Egs. (7) for given y and By, three equations for determining T, p,,
and Hpy:
- IB2r1
[ =y ™) He] =0, m=wmwvﬁhﬂ
w] = lpp + u — Tur — (20y* ~ ) H.2y " (8 mpy) ]

These equations, consistent with the inequality [s+wug]=0, which expresses the fact that the fotal
entropy of the medium in the jump is nondecreasing, areusedtocalculate the Alfven plane-polarized dis-
continuities existing only in a magnetized medium. An example of such a calculation in a saturated ideal
gas (p=1+47pKlp—T)H™Y is presented in [4].

It can be shown that when p = const, no simple wave propagating with finite velocity in a nonconducting

magnetized medium exists.

Therefore, the systems of conditions following from Egs. (6) when [p] =0 imply that all the discon-
tinuities are zero, so that Alfven discontinuities cannot exist in a nonconducting magnetized medium.

Shock waves are surfaces of discontinuity at which the conditions of Egs. (5) and (6) hold in most
general form, where my # 0 and [p] = 0.

Shock waves in a magnetized medium are plane-polarized.

The last three conditions of Egs. (5) are used to determine T,, p,, and Hry, and the values of T, and
p, are determined from Egs. (6) in a nonconducting medium.

Magnetic induction is proportional to the density p (B/p = const) in a longitudinal shock wave (B, =0)
in a conducting magnetized medium.

In a conducting magnetized medium there exist separate shock waves, as in a nonmagnetic medium.

Eliminating flow mp from the fourth condition of Eqs. (5) by means of the third and last conditions,
we obtain the shock adiabatic equation for a magnetized conducting medium in the form

01 = (i + ot — Tur] + (1) — 020, —2 | - (N (10)

where the bar denotes the mean value in the discontinuity (@ = Yla,+a ).

The adiabatic equation (10) can be written in more compact form in terms of the total (hydrodynamic+
electromagnetic) enthalpy and pressure, that is,

= (2 2] (e

p'=p+pt=p—iu,

__ ® HB
w _—_w+U"+%———-———4nP =w—pup —u -+ Tur

When [Hr]= 0, we obtain from Egs. (10) and (11) a shock adiabatic equation for a nonconducting mag-
netized medium in a magnetic field.

When p =const, Eqs. (10) and (11) become the well-known shock adiabatic equation for a nonmag-
netic medium.
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